C2C12 skeletal muscle cells adopt cardiac-like sodium current properties in a cardiac cell environment.

نویسندگان

  • Eva Zebedin
  • Markus Mille
  • Maria Speiser
  • Touran Zarrabi
  • Walter Sandtner
  • Birgit Latzenhofer
  • Hannes Todt
  • Karlheinz Hilber
چکیده

Intracardiac transplantation of undifferentiated skeletal muscle cells (myoblasts) has emerged as a promising therapy for myocardial infarct repair and is already undergoing clinical trials. The fact that cells originating from skeletal muscle have different electrophysiological properties than cardiomyocytes, however, may considerably limit the success of this therapy and, in addition, cause side effects. Indeed, a major problem observed after myoblast transplantation is the occurrence of ventricular arrhythmias. The most often transient nature of these arrhythmias may suggest that, once transplanted into cardiac tissue, skeletal muscle cells adopt more cardiac-like electrophysiological properties. To test whether a cardiac cell environment can indeed modify electrophysiological parameters of skeletal muscle cells, we treated mouse C(2)C(12) myocytes with medium preconditioned by primary cardiocytes and compared their functional sodium current properties with those of control cells. We found this treatment to significantly alter the activation and inactivation properties of sodium currents from "skeletal muscle" to more "cardiac"-like ones. Sodium currents of cardiac-conditioned cells showed a reduced sensitivity to block by tetrodotoxin. These findings and reverse transcription PCR experiments suggest that an upregulation of the expression of the cardiac sodium channel isoform Na(v)1.5 versus the skeletal muscle isoform Na(v)1.4 is responsible for the observed changes in sodium current function. We conclude that cardiomyocytes alter sodium channel isoform expression of skeletal muscle cells via a paracrine mechanism. Thereby, skeletal muscle cells with more cardiac-like sodium current properties are generated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ursolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens

Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...

متن کامل

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Altered functional differentiation of mesoangioblasts in a genetic myopathy

Mutations underlying genetic cardiomyopathies might affect differentiation commitment of resident progenitor cells. Cardiac mesoangioblasts (cMabs) are multipotent progenitor cells resident in the myocardium. A switch from cardiac to skeletal muscle differentiation has been recently described in cMabs from β-sarcoglycan-null mice (βSG(-/-)), a murine model of genetic myopathy with early myocard...

متن کامل

Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.

Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes i...

متن کامل

Voltage-dependent Na+ channel phenotype changes in myoblasts. Consequences for cardiac repair.

OBJECTIVE Cellular cardiomyoplasty using skeletal myoblasts is a promising therapy for myocardial infarct repair. Once transplanted, myoblasts grow, differentiate and adapt their electrophysiological properties towards more cardiac-like phenotypes. Voltage-dependent Na(+) channels (Na(v)) are the main proteins involved in the propagation of the cardiac action potential, and their phenotype affe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2007